Cervical Cancer
LSA: Latent Style Augmentation Towards Stain-Agnostic Cervical Cancer Screening
Cai, Jiangdong, Jiang, Haotian, Shen, Zhenrong, Li, Yonghao, Xiong, Honglin, Zhang, Lichi, Wang, Qian
The deployment of computer-aided diagnosis systems for cervical cancer screening using whole slide images (WSIs) faces critical challenges due to domain shifts caused by staining variations across different scanners and imaging environments. While existing stain augmentation methods improve patch-level robustness, they fail to scale to WSIs due to two key limitations: (1) inconsistent stain patterns when extending patch operations to gigapixel slides, and (2) prohibitive computational/storage costs from offline processing of augmented WSIs.To address this, we propose Latent Style Augmentation (LSA), a framework that performs efficient, online stain augmentation directly on WSI-level latent features. We first introduce WSAug, a WSI-level stain augmentation method ensuring consistent stain across patches within a WSI. Using offline-augmented WSIs by WSAug, we design and train Stain Transformer, which can simulate targeted style in the latent space, efficiently enhancing the robustness of the WSI-level classifier. We validate our method on a multi-scanner WSI dataset for cervical cancer diagnosis. Despite being trained on data from a single scanner, our approach achieves significant performance improvements on out-of-distribution data from other scanners. Code will be available at https://github.com/caijd2000/LSA.
Research on Cervical Cancer p16/Ki-67 Immunohistochemical Dual-Staining Image Recognition Algorithm Based on YOLO
Wu, Xiao-Jun, Zhao, Cai-Jun, Meng, Chun, Wang, Hang
The p16/Ki-67 dual staining method is a new approach for cervical cancer screening with high sensitivity and specificity. However, there are issues of mis-detection and inaccurate recognition when the YOLOv5s algorithm is directly applied to dual-stained cell images. This paper Proposes a novel cervical cancer dual-stained image recognition (DSIR-YOLO) model based on an YOLOv5. By fusing the Swin-Transformer module, GAM attention mechanism, multi-scale feature fusion, and EIoU loss function, the detection performance is significantly improved, with mAP@0.5 and mAP@0.5:0.95 reaching 92.6% and 70.5%, respectively. Compared with YOLOv5s in five-fold cross-validation, the accuracy, recall, mAP@0.5, and mAP@0.5:0.95 of the improved algorithm are increased by 2.3%, 4.1%, 4.3%, and 8.0%, respectively, with smaller variances and higher stability. Compared with other detection algorithms, DSIR-YOLO in this paper sacrifices some performance requirements to improve the network recognition effect. In addition, the influence of dataset quality on the detection results is studied. By controlling the sealing property of pixels, scale difference, unlabelled cells, and diagonal annotation, the model detection accuracy, recall, mAP@0.5, and mAP@0.5:0.95 are improved by 13.3%, 15.3%, 18.3%, and 30.5%, respectively.
AI Guided Early Screening of Cervical Cancer
S, Dharanidharan I, S, Suhitha Renuka V, Singh, Ajishi, Pravin, Sheena Christabel
In order to support the creation of reliable machine learning models for anomaly detection, this project focuses on preprocessing, enhancing, and organizing a medical imaging dataset. There are two classifications in the dataset: normal and abnormal, along with extra noise fluctuations. In order to improve the photographs' quality, undesirable artifacts, including visible medical equipment at the edges, were eliminated using central cropping. Adjusting the brightness and contrast was one of the additional preprocessing processes. Normalization was then performed to normalize the data. To make classification jobs easier, the dataset was methodically handled by combining several image subsets into two primary categories: normal and pathological. To provide a strong training set that adapts well to real-world situations, sophisticated picture preprocessing techniques were used, such as contrast enhancement and real-time augmentation (including rotations, zooms, and brightness modifications). To guarantee efficient model evaluation, the data was subsequently divided into training and testing subsets. In order to create precise and effective machine learning models for medical anomaly detection, high-quality input data is ensured via this thorough approach. Because of the project pipeline's flexible and scalable design, it can be easily integrated with bigger clinical decision-support systems.
An Explainable Attention Model for Cervical Precancer Risk Classification using Colposcopic Images
Khare, Smith K., Booth, Berit Bargum, Blanes-Vidal, Victoria, Petersen, Lone Kjeld, Nadimi, Esmaeil S.
Cervical cancer remains a major worldwide health issue, with early identification and risk assessment playing critical roles in effective preventive interventions. This paper presents the Cervix-AID-Net model for cervical precancer risk classification. The study designs and evaluates the proposed Cervix-AID-Net model based on patients colposcopy images. The model comprises a Convolutional Block Attention Module (CBAM) and convolutional layers that extract interpretable and representative features of colposcopic images to distinguish high-risk and low-risk cervical precancer. In addition, the proposed Cervix-AID-Net model integrates four explainable techniques, namely gradient class activation maps, Local Interpretable Model-agnostic Explanations, CartoonX, and pixel rate distortion explanation based on output feature maps and input features. The evaluation using holdout and ten-fold cross-validation techniques yielded a classification accuracy of 99.33\% and 99.81\%. The analysis revealed that CartoonX provides meticulous explanations for the decision of the Cervix-AID-Net model due to its ability to provide the relevant piece-wise smooth part of the image. The effect of Gaussian noise and blur on the input shows that the performance remains unchanged up to Gaussian noise of 3\% and blur of 10\%, while the performance reduces thereafter. A comparison study of the proposed model's performance compared to other deep learning approaches highlights the Cervix-AID-Net model's potential as a supplemental tool for increasing the effectiveness of cervical precancer risk assessment. The proposed method, which incorporates the CBAM and explainable artificial integration, has the potential to influence cervical cancer prevention and early detection, improving patient outcomes and lowering the worldwide burden of this preventable disease.
New Insight in Cervical Cancer Diagnosis Using Convolution Neural Network Architecture
Khozaimi, Ach., Mahmudy, Wayan Firdaus
The Pap smear is a screening method for early cervical cancer diagnosis. The selection of the right optimizer in the convolutional neural network (CNN) model is key to the success of the CNN in image classification, including the classification of cervical cancer Pap smear images. In this study, stochastic gradient descent (SGD), RMSprop, Adam, AdaGrad, AdaDelta, Adamax, and Nadam optimizers were used to classify cervical cancer Pap smear images from the SipakMed dataset. Resnet-18, Resnet-34, and VGG-16 are the CNN architectures used in this study, and each architecture uses a transfer-learning model. Based on the test results, we conclude that the transfer learning model performs better on all CNNs and optimization techniques and that in the transfer learning model, the optimization has little influence on the training of the model. Adamax, with accuracy values of 72.8% and 66.8%, had the best accuracy for the VGG-16 and Resnet-18 architectures, respectively. Resnet-34 had 54.0%. This is 0.034% lower than Nadam. Overall, Adamax is a suitable optimizer for CNN in cervical cancer classification on Resnet-18, Resnet-34, and VGG-16 architectures. This study provides new insights into the configuration of CNN models for Pap smear image analysis.
Deep Learning Descriptor Hybridization with Feature Reduction for Accurate Cervical Cancer Colposcopy Image Classification
Saini, Saurabh, Ahuja, Kapil, Chennareddy, Siddartha, Boddupalli, Karthik
Cervical cancer stands as a predominant cause of female mortality, underscoring the need for regular screenings to enable early diagnosis and preemptive treatment of pre-cancerous conditions. The transformation zone in the cervix, where cellular differentiation occurs, plays a critical role in the detection of abnormalities. Colposcopy has emerged as a pivotal tool in cervical cancer prevention since it provides a meticulous examination of cervical abnormalities. However, challenges in visual evaluation necessitate the development of Computer Aided Diagnosis (CAD) systems. We propose a novel CAD system that combines the strengths of various deep-learning descriptors (ResNet50, ResNet101, and ResNet152) with appropriate feature normalization (min-max) as well as feature reduction technique (LDA). The combination of different descriptors ensures that all the features (low-level like edges and colour, high-level like shape and texture) are captured, feature normalization prevents biased learning, and feature reduction avoids overfitting. We do experiments on the IARC dataset provided by WHO. The dataset is initially segmented and balanced. Our approach achieves exceptional performance in the range of 97%-100% for both the normal-abnormal and the type classification. A competitive approach for type classification on the same dataset achieved 81%-91% performance.
Precise Hybrid-Actuation Robotic Fiber for Enhanced Cervical Disease Treatment
Zhao, Jinshi, Zheng, Qindong, Demircali, Ali Anil, Guo, Xiaotong, Simon, Daniel, Paraskevaidi, Maria, Linton, Nick W F, Takats, Zoltan, Kyrgiou, Maria, Temelkuran, Burak
Treatment for high-grade precancerous cervical lesions and early-stage cancers, mainly affecting women of reproductive age, often involves fertility-sparing treatment methods. Commonly used local treatments for cervical precancers have shown the risk of leaving a positive cancer margin and engendering subsequent complications according to the precision and depth of excision. An intra-operative device that allows the careful excision of the disease while conserving healthy cervical tissue would potentially enhance such treatment. In this study, we developed a polymer-based robotic fiber measuring 150 mm in length and 1.7 mm in diameter, fabricated using a highly scalable fiber drawing technique. This robotic fiber utilizes a hybrid actuation mechanism, combining electrothermal and tendon-driven actuation mechanisms, thus enabling a maximum motion range of 46 mm from its origin with a sub-100 {\mu}m motion precision. We also developed control algorithms for the actuation methods of this robotic fiber, including predefined path control and telemanipulation, enabling coarse positioning of the fiber tip to the target area followed by a precise scan. The combination of a surgical laser fiber with the robotic fiber allows for high-precision surgical ablation. Additionally, we conducted experiments using a cervical phantom that demonstrated the robotic fiber's ability to access and perform high-precision scans, highlighting its potential for cervical disease treatments and improvement of oncological outcomes.
Interpretable pap smear cell representation for cervical cancer screening
Ando, Yu, and, Nora Jee-Young Park, Chong, Gun Oh, Ko, Seokhwan, Lee, Donghyeon, Cho, Junghwan, Han, Hyungsoo
Screening is critical for prevention and early detection of cervical cancer but it is time-consuming and laborious. Supervised deep convolutional neural networks have been developed to automate pap smear screening and the results are promising. However, the interest in using only normal samples to train deep neural networks has increased owing to class imbalance problems and high-labeling costs that are both prevalent in healthcare. In this study, we introduce a method to learn explainable deep cervical cell representations for pap smear cytology images based on one class classification using variational autoencoders. Findings demonstrate that a score can be calculated for cell abnormality without training models with abnormal samples and localize abnormality to interpret our results with a novel metric based on absolute difference in cross entropy in agglomerative clustering. The best model that discriminates squamous cell carcinoma (SCC) from normals gives 0.908 +- 0.003 area under operating characteristic curve (AUC) and one that discriminates high-grade epithelial lesion (HSIL) 0.920 +- 0.002 AUC. Compared to other clustering methods, our method enhances the V-measure and yields higher homogeneity scores, which more effectively isolate different abnormality regions, aiding in the interpretation of our results. Evaluation using in-house and additional open dataset show that our model can discriminate abnormality without the need of additional training of deep models.
CerviFormer: A Pap-smear based cervical cancer classification method using cross attention and latent transformer
Deo, Bhaswati Singha, Pal, Mayukha, Panigarhi, Prasanta K., Pradhan, Asima
Purpose: Cervical cancer is one of the primary causes of death in women. It should be diagnosed early and treated according to the best medical advice, as with other diseases, to ensure that its effects are as minimal as possible. Pap smear images are one of the most constructive ways for identifying this type of cancer. This study proposes a cross-attention-based Transfomer approach for the reliable classification of cervical cancer in Pap smear images. Methods: In this study, we propose the CerviFormer -- a model that depends on the Transformers and thereby requires minimal architectural assumptions about the size of the input data. The model uses a cross-attention technique to repeatedly consolidate the input data into a compact latent Transformer module, which enables it to manage very large-scale inputs. We evaluated our model on two publicly available Pap smear datasets. Results: For 3-state classification on the Sipakmed data, the model achieved an accuracy of 93.70%. For 2-state classification on the Herlev data, the model achieved an accuracy of 94.57%. Conclusion: Experimental results on two publicly accessible datasets demonstrate that the proposed method achieves competitive results when compared to contemporary approaches. The proposed method brings forth a comprehensive classification model to detect cervical cancer in Pap smear images. This may aid medical professionals in providing better cervical cancer treatment, consequently, enhancing the overall effectiveness of the entire testing process.
Artificial intelligence tech could improve cervical cancer diagnoses, UK experts say
A UK hospital is piloting technology using artificial intelligence and advanced imaging to improve early diagnosis of cervical cancer. University Hospital Monklands in Airdrie said it has become the first hospital in the UK and one of the first in the world to pilot the technology as part of its cervical screening programme. Health experts said the new technology could be instrumental in ensuring earlier detection of pre-cancerous cells and cancer cells and has the potential to save lives. The pilot is using a digital cytology system, the GeniusTM Digital Diagnostics System, from women's health company Hologic. For the pilot programme the system will create digital images of cervical smear slides from samples that have tested positive for Human Papilloma Virus (HPV).